なぜ米大統領選は、ビッグデータの事例とならなかったのか?

Analytics News(アナリティクスニュース)

なぜ米大統領選は、ビッグデータの事例とならなかったのか?

TOPICS 2016年12月16日 10:00

なぜ米大統領選は、ビッグデータの事例とならなかったのか?

2016年11月の米国大統領選挙は、AIとビッグデータを活用し、その性能をアピールする格好の事例になり得たにもかかわらず、AIを手掛けるメーカーや研究所は沈黙を守った。なぜビッグデータは、アメリカ大統領選挙に太刀打ちできないのか。その理由を探る。

ビッグデータ事例とならなかった理由は、その仕組みにあった。

セイバーメトリクスを応用して将来の結果を予測するアメリカの統計学者であるネイト・シルバーは、ビッグデータを駆使して、2008年合衆国大統領選挙で合衆国50州のうち49州(95%)の、そして2012年には全州(100%)の勝者を正確に予測した。神のごとき的中率を誇ってきたシルバー氏は、今回の事例でも、投票日の10日前の時点でヒラリー・クリントンが勝利する確率を80~85%と予想した。しかし、今回の結果はシルバー氏だけではなく、世界中の多くの人の予想を覆す結果となり、ビッグデータ事例とはならなかった。

有効投票数が億単位(2016年度は1億1943万人)にもなる世界最大の選挙では、投票前の当選者予測もさることながら、選挙当日に刻々と変化するリアルタイム予測こそ重要だ。

またアメリカ大統領選挙の仕組みをよく観察してみると、ビッグデータを構成するその仕組みは極めて複雑であり、投票数の多かった人や、多くの州で勝利した人が、必ずしも大統領選で勝者となれるわけではないということも見えてくる。

現在の米国大統領選の仕組みは、投票のパターンに対して結果(選挙人獲得数)が恐しく敏感であり、加えて、ほんのちょっとした有権者の気まぐれで、選挙結果が簡単に大逆転してしまうものであることが見えてきたのだ。

以上、下記URLからの要約
http://eetimes.jp/ee/articles/1611/29/news026.html

最新TOPICS

【AI】三井住友銀行、AIによる効率化計画で約4000人の配置換え---「手数料ビジネスの終焉」「ハンコを押すだけの人はもういらない」「まず中間管理職が用済みに」(2017年06月22日 10:03)

三井住友銀行の今後3年間の計画 ・全店舗をペーパーレス化 ・相談業務を中心とする次世代型の店舗に ・事務作業は事務センターに集約 ・AIなどを使って作業の効率化 ・約4000人を新たな事業部門に移す 【テーマ】 ・超優秀なAIに仕事を奪われる ・コスト削減しか道はない ・手数料ビジネスの終焉 ・ローンの審査もAIで ・ハンコを押すだけの人はもういらない ・まず中間管理職...

関連用語・タグ

決定木分析()

  • 用語集

樹木状のモデルを使って要因を分析しその分析結果から境界線を探して予測を行う、データマイニングの手法のひとつ。

ディープラーニング(Deep Learning)

  • 用語集

「ディープラーニング(Deep Learning:深層学習)」とは、コンピュータによる機械学習の1種であり、人間の脳の階層構造をコンピュータで再現しようと言うアイデアに基づいた「ニューラルネットワーク」を改良し、画像や音声などの認識や、自動運転などの複雑な判断を可能にする。

IoT(モノのインターネット:Internet of Things)

「IoT」とは、従来はコンピュータやサーバなどの情報・通信機器だけに接続されていたインターネットを、世の中に存在する様々な物体(モノ)に接続して自動認識や自動制御、遠隔計測などを行う技術。

判別分析法()

  • 用語集

データを異なるグループに分ける際に、まだ分類されていない新しいデータがどちらのグループに入るのかを判別するための基準を得るための分類の手法。

クリックストリームデータ()

  • 用語集

Web サイトやオンライン・ショップにおける訪問者のアクセス・ログである。Web サイトやオンライン・ショップにアクセスした訪問者が、どのような順番に従ってWebサイト内を移動したのかという一連の履歴がわかる。来訪者はリンクをクリックしてサイト内を移動するため、「クリックの流れ」とも呼ばれる。

イベント情報

  • KSKサイド001
  • OSSNEWSに広告を掲載しませんか?

facebook

twitter