アナリティクスとは「データの中に意味のあるパターンを見出し伝えること」を指す包括的かつ多面的な分野。ある目的のために、さまざまな分析手法やソフトウェアベースのアルゴリズムを駆使しながら、データに潜んでいる特定のパターンや相関関係などの知見を抽出することを意味する。

アナリティクスとは

アナリティクスとは「データの中に意味のあるパターンを見出し伝えること」を指す包括的かつ多面的な分野。ある目的のために、さまざまな分析手法やソフトウェアベースのアルゴリズムを駆使しながら、データに潜んでいる特定のパターンや相関関係などの知見を抽出することを意味する。

目次

「アナリティクス」とは
■概要
・アナリティクスが明らかにできる課題
・ビジネス課題解決アプローチ
・アナリティクスの高速化
■4つのアナリティクスタイプ
①記述的アナリティクス(Descriptive Analytics)
②診断的アナリティクス(Diagnostic Analytics)
③予測的アナリティクス(Predictive Analytics)
④処方的アナリティクス(Prescriptive Analytics)

「アナリティクス」とは

■概要

アナリティクスとは、ある目的にもとづいて、さまざまな分析手法やソフトウェアベースのアルゴリズムを駆使しながら、データに潜んでいる特定のパターンや相関関係などの知見を抽出することを意味する。

アナリティクスとは「データの中に意味のあるパターンを見出し、伝えること」を意味する包括的/多面的な分野である。

アナリティクスが明らかにできる課題

アナリティクスを使用すると、人間の推測/直感に依存する必要性は減少し、相関関係やパターンを明らかできる。

アナリティクスにより、次のようなタイプの疑問に対応できる。
・過去に何が発生したのか?
・その原因/理由は何だったのか?
・今は何が発生したのか?
・次に何が発生する可能性が高いのか?

ビジネス課題解決アプローチ

アナリティクスは、メソッドが明確に定義された仮説に関係し、規範的な面も大きく、成熟したアナリティクスプロセスは実務化に近い場面で利用されており、多くの場合において有用なソリューションを生み出す。

数値/データ/分析的発見に関するアナリティクスを業務の現場に組み込むことで、さまざまな想定や確信の正確性を明らかにできる。アナリティクスの手法は、ビジネス課題を解決するためのアプローチでもあり、その活用法はそれぞれのビジネス課題によってさまざまに異なる。

アナリティクスの高速化

アナリティクスでは、大量に記録されたデータに潜む有意義なパターンや知識を発見するために、数学/統計学/予測モデリング/機械学習などの手法を活用する。

近年では、大量データを保管できるIT環境や、高度なソフトウェアアルゴリズムを実行するためのパワフルなコンピュートリソースにより、意思決定に欠かせない洞察を極めて短時間で導き出せるようになってきている。

■4つのアナリティクスタイプ

アナリティクスは4つのタイプに大別される。

①記述的アナリティクス(Descriptive Analytics)

記述的アナリティクスは「過去に何が起きたのか?」を理解するために活用できるアナリティクスタイプである。

最も古くから利用されてきたアナリティクスタイプで、1749年に、スウェーデンが世界初の人口統計を作成したことが発端とされている。人口統計を表形式でカウントすることにより、収集したデータポイントの要約が可能となり、記述統計の第一歩といえる取り組みとされている。

記述的アナリティクスは、現在でも、「Webサイトアクセス数」「生産数と販売数の比較」など、多くの場面で、非常に幅広い目的で利用されている。

②診断的アナリティクス(Diagnostic Analytics)

診断的アナリティクスは、「なぜ起きたのか?」を明らかにできるアナリティクスタイプである。

蓄積されている過去データから因果関係を見つけ出すことにより、「その事象がなぜ起きたのか?」を明らかにする。

③予測的アナリティクス(Predictive Analytics)

予測的アナリティクスは、「将来何がどのくらいの確率で起きるのか?」を予測するアナリティクスタイプで、「情勢判断支援機能」の意味合いがある。

既存データベースから過去データを参照するデータマイニングの拡張機能としての面もあり、統計学的モデルを使用して将来何がどのくらいの確率で起きるのかを予測する。

例えば、商品単位の需要を予測分析することで、「需要が上がりそうなタイミングで商品を発注」「需要が下がりそうなタイミングで値下げ」などを実施し、企業の潜在的な機会獲得やリスク回避に利用できる。

④処方的アナリティクス(Prescriptive Analytics)

処方的アナリティクスは、「将来のシナリオ予測結果により最適な意思決定に関する推奨事項を提示する」アナリティクスタイプであり、「予測される事態を最適化するには何をすべきか?」という処方を行う。

処方的アナリティクスは次世代の分析法といわれており、リアルタイムで答えを導き出すためには、有効なビッグデータと、高度なコンピューティング性能を活用できる環境を整える必要がある。

「①記述的アナリティクス」「②診断的アナリティクス」「③予測的アナリティクス」は、人間が判断するために必要な情報を提示するものであり、それらをどのように読み解き、どのような施策を実施するのかについては人間が考察する必要がある。

それに対して、処方的アナリティクスは、「①過去に何が起きたかを解析」+「②なぜ起きたのかを明らかにする」+「③これから何が起こるかを推測」の各アナリティクスを組み合わせて、次に取るべき最善の行動を人間の代わりに考察する。

 

参考元サイト

イベント情報

セミナー講演資料

無料資料プレゼント

2021/03/04 セキュリティDAYS Keyspider資料

講演資料を見るには、 プライバシーポリシーに同意して、送付先メールアドレスをご入力しご請求ください。

またご入力いただきました情報は、当該資料の作成・提供企業とも共有させていただき、当社及び各社のサービス、製品、セミナー、イベントなどのご案内に使用させていただきます。

本資料を見るには次の画面でアンケートに回答していただく必要があります。



セミナー講演資料公開中

文書を作る過程における情報(Slack/Teamsでのコメントなど)をどう管理、共有するべきか? ~新しい文書情報管理の考え方~

世界最高峰のリアルハッカー集団を活用した脆弱性対策 ~米国政府も採用、脆弱性診断・ペネトレーションテストを大胆に変革する方法~

SMS認証の代替手段、より高セキュアな“電話発信認証サービスTELEO”とは? ~スマホによる多要素認証の比較と、SMS認証のリスク~

  • 書籍

Analytics News ACCESS RANKING

  • OSSNEWSに広告を掲載しませんか?

facebook

twitter